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GENERAL EXPRESSIONS FOR ACID-BASE 

TITRATIONS OF ARBITRARY MIXTURES 

Robert de Levie, Chemistry Department 
Georgetown University, Washington DC 20057 

Abstract: A single, general master equation is given for acid-base titrations, 
describing the entire progress of the titration, and equally valid for the titration 
of a single strong acid with a single strong base as for that of the titration of an 

arbitrary mixture of acids with an arbitrary mixture of bases, or vice versa. 

Introduction. Acid-base titrations are the backbone of classical quantitative 
analysis. Initially, color indicators were used to detect their equivalence points, 

and a rigorous theory for their complete course was neither required nor testable. 
The advent of pH meters changed that, but the theory did not catch up. Instead, 
titration curves continued to be described in terms of a number of isolated points 
(for the onset of the titration, and for each equivalence point) together with ap- 
proximate intermediate segments not quite connecting those discrete points. 
While this yields a fairly close approximation for the titration of single, mono- 
protic acids and bases, it fails for more complicated systems, such as polyprotic 
acids or bases and their salts, and especially for mixtures of these. 

Consequently, for the determination of equilibrium constants from titration 
curves, special numerical algorithms were developed to fit experimental data. 
Alternatively, expressions for the various chemical equilibria can be solved by 
computer as a set of simultaneous equations. While both methods lead to correct 

results, they are rather non-transparent to the general user. 

Earlier we showed that simple, closed-form solutions describing the progress 
of a titration can be obtained when the traditional approach of writing the pH 
(the intensive property) as an explicit function of the volume of titrant used (the 
extensive property) is abolished in favor of the reverse process1. This inversion —— 
leads to an explicit expression for the titrant volume as a function of pH. Merely ~f- 
by interchanging the axes, the resulting progress curve can be plotted as a titra- □ 
tion curve. u 

In the present communication we will generalize our earlier approach, and 
extend it to arbitrary mixtures of acids titrated with arbitrary mixtures of bases, 
or vice versa. This generalization only requires a slight redefinition of the con-     des 

cepts of proton association and dissociation functions. '" 

A 



We begin our derivation with the simple titration of a single acid with a single 
base, then gradually extend our approach in order to arrive at the final, quite 

general results. In all cases we start from the charge balance equation. For the 
sake of conciseness, the supporting algebra will only be shown explicitly for the 

first example. 

Titrating a single strong monoprotic acid HA with a single strong monoprotic 

base MOH. During a titration, we add a volume Vb of base to the fixed acid sam- 
ple volume Va , so that the total volume Va + Vb changes continually. We take this 
into account by writing 

cQvo 
[A'] - (1) 

Va + Vb 

[M + j=      b   b (2) 
Va + Vb 

where Ca and Cb refer to the initial total analytical concentrations of acid and 

base respectively, and are therefore constant during the titration, while [A"], 
[M+], [H+] and [OH"] change. The terms Va/(Va + Vb) and Vb/(Va + Vb) describe 
the mutual dilution of the sample by the titrant, and vice versa. 

We now introduce the charge balance 
[H + ] + [M + ] = [A"] + [OH'] (3) 

Upon substitution of eqns.(l) and (2) this becomes 

CbVb           CaVa 
[H + ]   + b—b— = L_L_+r0H-] (4) 

V   + Vt,      V   + V, a b a b 
which can be rearranged to 

{Cb +  [H + ] -  [OH-]}Vb = {Ca -  [H + ] +  [OH']}Va (5) 

From this we calculate the progress curve as 
Vb        Ca   "   tH + ] + [OH"]      Ca   -   A 
— =  = —  (6) 
Va      Cb+[H + ] -  [OH"]     Cb + A 

where we have introduced the abbreviation 

A = [H 
+
 ]-[OH-] (7) 

For any value of [H+] we can find the corresponding value of A using eqn.(7), as- 
suming that the ionization product of water is given, and then obtain the value of 
Vb/Va from eqn.(6). Therefore, eqn.(6) describes the progress of the entire titra- 
tion curve. While it is calculated in terms of Vb as a function of [H + ], we can plot 
it as a traditional titration curve of pH vs. Vb if so desired. 



Titrating a single weak monoprotic acid HA with a single strong monoprotic 
base MOH. The approach is identical to that just taken, except that the mass bal- 

ance for the weak acid must include the undissociated acid, i.e., eqn.(l) must be 

replaced by 

[HA] + [A"] =      a   a (8) 
va + vb 

We now introduce the concentration fraction 

[A"]                 Ka 
aA- = — = -  (9) 

[HA] + [A1       [H + ] + Ka 

where KL is the dissociation constant of the weak acid. Combining eqns.(8) and 
a 

(9) yields 
CaVaaA- 

[A-] = {[HA] + [A-]} aA-  = (10) 
va + vb 

which can be combined with eqns.(2) and (3) to yield 
Vb       C. aA- - A b a   A (n) 

Va Cb + A 

Titrating a single polyprotic acid HnA with a single strong monoprotic base 
MOH. In order to extend the above approach to a polyprotic acid we simply re- 
place aA- by the proton dissociation function Fa , which is the weighted sum of the 
concentration fractions a , each weighted by the number of protons lost. It there- 
fore represents the fraction of dissociable protons for the particular species con- 
sidered, here HQA. The subscript a reflects the Bronsted notion of the acid as a 
proton donor. Deleting all valencies for the sake of notational simplicity, we have 

F„ = a„    A+2a„    A + 3 a„   A + ... + naA (12) 
n-l n-2 n-3 

where 

 [HrK1K2...Kn_m  
aH A =   (13) 

[H]n + [Hf"1 Kx + [Hf-2 Kx K2 + ... + Kx K2 ... Kn 

with m = 1, 2,..., n , while 

[H] [Hn mA] 
= °-m (14) 

[Hn.m+1A] 

This leads to the expression 

Vb        FaCa-A 

Va Cb + A 
(15) 



Titrating acid salts. The above result can be extended to an acid salt by appropri- 
ately defining the proton dissociation function Fa . For example, for phtalic acid, 

here denoted as H2A, eqn.(12) leads to 

Fa = aHA- + 2aA2" <16) 

while we can define Fa for potassium hydrogen phtalate, KHA, as 

Fa = aA2' " aH2A (1?) 

where the weighting factor 1 indicates the loss of one proton in going from HA" to 
A2", and the factor -1 the gain of one proton (formally, the loss of -1 protons) in 
going from HA" to H2A. 

Titrating an arbitrary mixture of acids with a single strong monoprotic base. 

Because the charge balance equation (3) is strictly additive in the weighted con- 
centrations of the various ionic species present (weighted by their respected va- 

lencies), we merely have to modify eqn.(15) for a mixture of acids to 

Vb          SFaCa-A b a    a  (18) 
Va C,  + A a b 

Titrating a weak monoprotic base B with a strong monoprotic acid HA. Here the 
roles of sample and titrant are reversed, and we find 

(19) 

(20) 

va cb 
aHB+ + A 

vb Ca-A 

[HB + ] 
aHB + 

where 
[OH"] [H + ; 

[HB + ] + [B]      [OH"] + Kb        [H+] + Ka 
and 

KaKb = Kw = [H + ][OH"] (21) 

Titrating a polyprotic base with a strong monoprotic acid. By analogy with 

eqns.(12) and (15) we find 
Va        FbCb + * 

Vh C    -  A b a 

where the proton association function 

(22) 

Fb = aHB + 2 aH,B + 3 aH,B + - + n aH B (23> 15 n 

accounts for the fraction of dissociable protons that can be bound to the particu- 
lar species (here: a polyprotic base), again deleting the valencies. The subscript b 

denotes the role of a base as a proton acceptor. 



Titrating an arbitrary mixture of acids with an arbitrary cocktail of bases. This 

generalization follows directly as 

Vb        2FaCa-A b a    a (24) 

Va       2FbCb + A 

Titrating an arbitrary set of bases with any number of acids. To complete the 

general discussion, we now reverse the roles of acid and base. This can be done 
either by derivation ab ovo, or simply by inversion of eqn.(24) to 

Va       2FbCb + A 

Vb        *FaCa-A 
(25) 

vt 
2FsCs + A 

vs 
S Ft Ct + A 

A single expression for the progress curve. A fully protonated acid can only 
lose protons, and F is obviously an appropriate function to use. Likewise, for a 

fully deprotonated base, Fb would be our first choice. For an acid salt, matters 
are more ambiguous, because it can in principle be titrated as an acid or as a 
base; it can therefore be described in terms of either possible proton loss or pos- 
sible proton gain. Fortunately there is no real problem here, because we always 
find that Fa = -Fb . We can therefore extend the use of Fb to all species involved 
in acid-base equilibria. By defining F = -Fa = Fb for each species participating in 
the titration we can then condense eqns.(24) and (25) into a single general rela- 
tion in terms of fitrant and sample properties, 

(26) 

The function F. Functions similar to F, Fa and Fb are widely used in the litera- 
ture, often denoted2'3 by symbols such as Z or n. There is, however, a subtle dif- 
ference with these earlier symbols, because they were usually not tied to the par- 

ticular species used in the sample and titrant but, instead, to the entire acid-base 
system considered. This makes them notationally less convenient to use when the 
sample is a mixture. The same applies to the use of the degree of completion of 
the titration, 4>. 

Below we will illustrate the use of F by considering orthophosphoric acid and 
its sodium and ammonium salts. For H3P04 we have 

F = Fb = - Fa = - ccUPO- - 2 aHpo2- - 3 apo3- (27) 
2       4 4 4 

For the monosodium salt NaH2P04 we have 

F = Fb = - Fa = - aHP02- - 2 apo3- + a^PO, (28) 

and for NH4H2P04 



F = Fb = - Fa = " «HPO*' - 2 <W- + aH,P04 
+ aNH, (29> 4 4 3       4 3 

Likewise we find for Na2HP04 

F = Fb = " Fa = " aPOJ" + 2 aH3P04 
+ aH2PO; (3°) 

and for (NH4)2HP04 

F = Fb = - Fa = " aPO^ + 2 aH3P04 
+ aH2P04 

+ 2 aNH3 (31) 

Finally, for Na3P04 we have 

F = Fb = " Fa = "HPOf + 2 aH,P04 
+ 3 aH3P04 (32) 

andfor(NH4)3P04 

F = Fb = " Fa = «HPOf + 2 aH,P04 
+ 3 aH,POd 

+ 3 aNH, (33) 4 2       4 3       4 3 

For mixtures, each component of a mixture contributes its own F and its own 
concentration C to the appropriate summation in eqn.(26), where F and C pertain 

to the original composition of sample or titrant. Equations (24) through (26) can 
be used at any pH in, e.g., a 'universal' buffer mixture. 

Discussion. The most immediate usefulness of eqns.(24)-(26) lies the fact that 
they can readily be applied to any acid-base titration, given the initial composi- 
tion of sample and titrant. They apply to the titration of acids, bases, their salts, 
and arbitrary mixtures of the above, and they allow direct comparison with exper- 
imental data. No sophisticated computer programs are needed. Of course, the 
simple formalism hides the mathematical complexity associated with polyprotic 
acids and bases, because the specific equilibrium constants enter only in the cal- 
culations of the various concentration fractions a which define the F's. However, 
since these a's can always be expressed directly in terms of [Ff + ] and the appro- 
priate equilibrium constants, the entire calculation is straightforward and non- 
iterative, the type of computation which can be done, e.g., on a spreadsheet. The 
availability of a general yet exact solutions also makes it easier to verify the valid- 

ity of approximations used in, e.g., Gran plots4 and Schwartz plots5, to determine 
the precise locations of equivalence points for complicated samples. 

Since the reasoning used is based solely on the validity of the charge balance 
equation, which itself derives from the electroneutrality requirement for macro- 

scopic volumes, the formalism is completely general. Activity corrections will of 
course affect the various equilibrium constants, and will thereby make the func- 
tions F weakly dependent on the ionic strength (unless the latter is kept constant) 
and on any other factors affecting activity coefficients. When activity corrections 

are needed, iterations become unavoidable, but the calculations can still be made 
readily, even on a spreadsheet6, since the uncertainties inherent in ionic activity 
coefficients seldom justify more than a single iteration. 



The dilution correction used in eqns.(l), (2) and (8) does not take into account 
any additional dilution from periodic rinsing of the inside of the titration vessel. 
Such additional dilution, non-inherent in the titration, can of course be taken 
into account, at some additional complexity, but only when the volumes of rinse 
solution used and the pH at which they were added are known. This unnecessary 
complication is therefore best avoided when quantitative data are desired. 

Equations (24) through (26) indicate at precisely what level the titration curve 
of a mixture of acids or bases is additive in the components of that mixture, some- 

thing a numerical simulation cannot do. It also provides an interesting link with 
the proton condition often used in equilibrium pH calculations. For example, at 

the onset of a titration, before any titrant has been added, Vt in eqn.(26) must be 
zero, so that the same must also apply to 2FSCS + A . Inspection of sFsCs + A = 0 

shows that it is, indeed, the proton condition for the sample, written in standard 
form, i.e., with all its parameters on the left-hand side. Likewise, 2FtCt + A = 0 is 
the proton condition for the titrant. Similar considerations apply to eqns.(24) and 

(25). 

The quantities 2FSCS + A and 2FtCt + A appearing on the right-hand side of 
eqn. (26) implicitly depend on [H+], both through A and, for weak acids and bases, 
through the functions F. At the beginning of the titration, Vt is zero, and so is 
2FSCS + A , which one can use to compute the pH of the sample. When the titra- 
tion is continued far beyond its equivalence point(s), Vt/Vs will tend to infinity, 
and sFtCt + A will approach zero; from sFtCt + A = 0 we can find the pH of the 
titrant. During the progress of the titration, [H+] assumes values intermediate 
between these two extremes, making neither 2FSCS + A nor sFtCt + A zero; in this 

range, Vt/Vs will assumes finite, positive values. 

The model presented here extends our earlier formalism1 in a way that is more 
conducive to treating mixtures. A similar approach can be applied to redox titra- 
tions7, in which case we have 

Vt 2 Fs Cs t s    s (34) 

Vs 2 Ft Ct 

where F now accounts for electrons gained rather than protons. (The absence of a 
term equivalent to A stems from the fact that, for good reasons, the oxidation and 
reduction of the solvent are neglected in such models.) This extension makes it 
possible to calculate the redox titration curves of arbitrary mixtures of oxidizable 
or reducible species, provided that such curves can be described in terms of equi- 

librium parameters. 



Finally we use three examples to illustrate the usefulness of the present ap- 
proach. The first merely shows how some analytical problems can be answered 
much more directly when one calculates the titrant volume Vt as a function of pH 
rather than the other way around. Likewise, the second and third examples illus- 

trate the rather minimal effort needed for the calculation of the titration curves 
of rather complex mixtures when using the approach presented here. 

Example 1: the titration error. The estimation of the titration error is a typical 
analytical problem. For example, given the acid-base equilibrium constants, one 

may want to estimate the likely error associated with the range over which an in- 
dicator changes its color. The pH limits of the color range have been tabulated, 

and one merely needs to calculate the corresponding titrant volumes. We note 
that this corresponds to our approach, in that specific pH values (here: the ex- 

tremes of the pH range of the indicator) are given, and the corresponding titrant 
volumes must be computed. Therefore the calculation is straightforward: one se- 

lects the pH extremes of the indicator range, calculates Vt/Vs for these limits, 
and determines the resulting titration error as the difference between this 
and the equivalence point value of Vt/Vs. Similarly,for apotentiometrictitration, the 
titration error resulting from any presumed or anticipated reading error ApH can 
be obtained immediately. 

For our illustration we calculate the titration error associated with the use of 

different color indicators in the titration of 10 mM acetic acid with 10 mM NaOH, 
using the transition ranges listed by Bänyai8. Taking the pKa of acetic acid as 

4.76, we calculate the pH at the equivalence point as 8.23, and therefore select as 
possible indicators cresol red (with a pH transition range given8 as 7.2 to 8.8), a- 

naphtolphthalein (listed range 7.3 to 8.7), cresol purple (range 7.4 to 9.0), thymol 
blue (range 8.0 to 9.6), and phenolphthalein (range 8.2 to 10.0). Consequently we 

merely calculate Vb/Va for the corresponding values of [H + ]. For example, for 
pH = 7.2 we have [H + ] = 6.31 x 10"8 M so that equation (9) yields aA- = 0.9964 
and Vb/Va is obtained from eqn. (11) as 0.9964 . For pH = 8.8 we likewise find 
Vb/Va = 1.0012 , so that the pH transition range of cresol red leads to a range of 
values of from -0.36% to +0.12% around the equivalence point value Vb/Va = 
Cb/Ca = 1.0000. Table 1 lists the corresponding error ranges similarly calculated 
for the above indicators; the computation is so simple that it can easily be per- 
formed for a number of indicators, even on a pocket calculator, thereby enabling 

the analyst to make a rational, optimal choice of available indicators. In the 
present example, cresol red, a-naphtolphthalein or cresol purple would make sat- 

isfactory indicators, while use of phenolphthalein would not be recommended. 



Table 1 

This conclusion is, of course, no better than the numerical data on which it is 

based. Insofar as the pH transition ranges are estimates for usually undefined 
ionic strengths, and the pKa is a value extrapolated to infinite dilution, conclu- 

sions from theoretical computations are always subject to experimental verifica- 
tion. However, the point of the present example is to illustrate that the present 

approach makes it quite easy to obtain numerical estimates of the likely titration 
errors, starting from measured data, whatever their inherent limitations. The 

method is no different for the titration of a mixture, except that one should then 

use eqn.(26) instead of eqn.(ll). 

Example 2: a universal buffer for use with metal cations. A 'universal' buffer 
mixture contains acids chosen such that, over a considerable pH range, the pH is 
an approximately linear function of the volume of base added. The pKa-values of 
the components of universal buffer mixtures often lie quite close together, a situ- 
ation that causes great difficulties in the traditional, mathematical description of 
the resulting titration curves. The formalism given here does not suffer from such 
complications, and is well-suited for such calculations, which can readily be per- 

formed on, e.g., a simple spreadsheet. 

Many proposed universal buffer mixtures contain anions known to form com- 
plexes with a variety of metal cations, and are therefore of rather limited useful- 
ness for inorganic studies. Bips et al.9 described a series of buffers based on 2,6- 
dimethylpyridines that show very limited affinity for many commonly used ca- 

tions, including Li+, Na+, K+, Mg2+, Ca2+, Zn2+, Cu2+ and Ni2+. Here we will il- 
lustrate the ease of calculating the resulting titration curve by considering two 

such buffer mixtures. The first one is composed of an equimolar mixture of three 
components: 3-nitro-2,6-dimethylpyridine (pKa = 2.87), 2,6-dimethylpyridine-3- 

sulfonic acid (pKa = 4.80), and 2,6-dimethylpyridine (pKa = 6.96). 

In this case, we can use equation (18) where, for each component, Fa is simply 
given by eqn. (9) as Fa = aA- = Ka/([H+] + Ka) ; the individual Ka-values follow 
immediately from the listed pKa values. The resulting curve for the titration with 
0.3 M NaOH of a mixture containing all three components at concentrations of 

0.1 M is then described by eqn.(18) with 

0.1 x 10"2-87 0.1 x 10"4-80 0.1 x 10"6-96 

EF  C   = + +  (35) 
[H + ] + 10"2-87       [H + ] + 10"4-80       [H+] + 10"6-96 a    a 



The resulting titration curve is shown in Fig. 1. 

Figl 

When a more nearly linear titration curve is desired, two components with in- 
termediate pKa-values can be included in the mixture. Moreover, the range can 

be extended somewhat by incorporating yet another component. The resulting 
mixture might then contain, in addition to the three components already men- 

tioned, 4-cyano-2,6-dimethylpyridine (pKa = 3.68), 3-acetyl-2,4,6-trimethylpyri- 
dine (pKa = 5.91) and 4-methoxy-2,6-dimethylpyridine (pKa = 8.04). Again, the 
calculation of the corresponding progress curve is straightforward. By slightly 
adjusting the concentrations of the various components (while still, in this exam- 

ple, keeping the total concentration constant at 0.3 M) we can then make the pH 
a linear function of Vb in the range 3.4 < pH < 8.1 to much better than ±0.01 pH, 

as shown in Fig. 2. Again, the ease of calculating the titration curve of the mixture 
makes it practical to fine-tune the concentrations of the various sample compo- 
nents in order to make a nearlv linear titration curve. 

Fig 2 

Example 3: titration of a diprotic acid with a mixture of bases. The above ex- 
amples only involved monoprotic acid-base equilibria, but our approach is equal- 
ly direct when polyprotic acids and bases are used. In that case one merely uses, 
for any polyprotic acid or base, instead of aA- the appropriate forms of equations 
(12) and (13) for Fa . Moreover, even though one will seldom choose a mixture as 
titrant, it can happen anyway. As our last example we therefore indicate how to 
describe the titration of sulfuric acid with sodium hydroxide contaminated with a 
relatively small amount of carbonate. 

For sulfuric acid we use11 pKal « 0 and pKa2 = 1.99 . In the calculation, we can 
select any sufficiently large value for Ka , such as 1010, so that 

[H+]Kal + 2KalKa2 1010[H+] + 2xl010xl0-1-99 

a     [H+]2 + [H+]Kal + KalKa2 ~ [H + ]2 + 1010[H + ] + 1010xl0-L" 

We can avoid the inelegant use of such an arbitrary value for Kal as follows. 
Given that [H + ] and Ka2 are of the order of 1 or less, while Kal is much larger 
than 1, we rewrite eqn.(36) as 

10 



[H + ]Kal + 2KalKa2 [H + ] + 2Ka2 
F„ = 

a     [H+]2+[H + ]Kal + KalKa2      [H+]2/Kal + [H+] + Ka2 

[H+] + 2Ka2 Ka2 lO"1-99 

«- a-=l+ - =1+  (37) 
[H+] + Ka2 [H+] + Ka2 [H+J + 10"1-99 

which is the expected result for a strong monoprotic acid plus a weak monoprotic 

acid. 

For sodium carbonate, with11 pKal = 6.35 and pKa2 = 10.33 , we have 

2[H+]2 + [H + ]Kal 2[H+]2 + 1(T6-35 [H+]    (38) 
p   = _ =  

b     [H + ]2 + [H + ]Kal + KalKa2      [H + ]2 + 10"6-35[H + ] + i(r6-35xl(r10-33 

Finally, using the value Kw = 10~14-00 for the ion product of water, we obtain 

the complete expression for the progress of the titration of 0.1 M H2S04 with a 
mixture of 0.09 M NaOH + 0.005 M Na2C03 as 

m-l-99 in-14.00 
0.1 { 1 + }-{[H + ]- — } 

Vb 
x [H+] + 10-i.99 '   Xl [H+]   

; (39) 

Va      Q Q9 ,        0-005 12[H+]2 + 10-6-35[H+] } ,   { IP'1400, 
[H+]2 + 10"635[H+] + io-6-35xlO-10-33 [H+] 

as shown in Fig. 3, and its inverse (for titrating the base mixture with the acid) in 
Fig. 4. By now it will be obvious to the reader that, even without invoking the 
(equally straightforward) example of, say, a hexaprotic acid such as EDTA, the 
conversion of a relation of the type of eqn.(36) in order to express [H + ] as an ex- 
plicit function of Vb is usually a hopeless undertaking, whereas the direct calcula- 
tion of Vb based on an equation such as (36) is direct and uncomplicated. 

Figs 3 & 4 

The explicit representation of complicated chemical systems unavoidably leads 
to complicated equations, a direct consequence of the many equilibria that must 

be taken into account. Nonetheless, the general structure of the explicit expres- 
sion for the progress curve remains simple: it is, at worst, the ratio of two sums of 
ratios. It is gratifying that a single master equation can represent all acid-base 
titrations, including arbitrary acid and base mixtures, in their entirety, and that it 
is simple enough to be amenable to direct, non-iterative evaluation on a spread- 

sheet. 

11 
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Legends to figures 

Fig. 1. The titration with 0.3 M aqueous NaOH of an aqueous solution containing 
0.1 M 3-nitro-2,6-dimethylpyridine (pKa = 2.87) + 0.1 M 2,6-dimethylpyridine-3- 
sulfonic acid (pKa = 4.80) + 0.1 M 2,6-dimethylpyridine (pKa = 6.96), calculated 

as explained in the text. 

Fig. 2. The titration curve calculated for the titration with 0.3 M aqueous NaOH 
of an aqueous solution containing 0.034 M 3-nitro-2,6-dimethylpyridine (pKa = 

2.87) + 0.051 M 4-cyano-2,6-dimethylpyridine (pKa = 3.68) + 0.053 M 2,6-di- 
methyl-pyridine-3-sulfonic acid (pKa = 4.80) + 0.051 M 3-acetyl-2,4,6-trime- 

thylpyridine (pKa = 5.91) + 0.048 M 2,6-dimethylpyridine (pKa = 6.96) + 0.063 
M 4-methoxy-2,6-dimethylpyridine (pKa = 8.04). Inset: the derivative d(pH) / 
d(Vb/Va) versus Vb/Va , calculated using a moving 5-point quadratic11, showing 
that this derivative is constant to within ±1.5% for 0.15 < Vb/Va < 0.85. 

Fig. 3. The titration curve, calculated from eqn.(36), for the titration of 0.1 M 

H2S04 with a solution containing 0.09 M NaOH + 0.005 M Na2C03 . 

Fig. 4. The titration curve for the reverse titration, i.e., of a sample containing 
0.09 M NaOH + 0.005 M Na2C03 with 0.1 M H2S04 , simply calculated as Va/Vb 

= l/(Vb/Va) where Vb/Va is given by eqn.(36). 

Table 

indicator pH range Vt/Va ran§e 

cresolred 7.2-8.8 -0.36 %-+0.12 % 
a-naphtolnaphthalein 7.3 - 8.7 -0.28 % - +0.09 % 

cresol purple 7.4-9.0 -0.22 %-+0.19 % 
thymol blue 8.0-9.6 -0.04 %-+0.80 % 

phenolphthalein 8.2 - 10.0 -0.00 % - + 2.02 % 

Table 1. Estimates of the range in Vb/Va corresponding to the listed 
transition ranges9 of the color indicators shown, for the titration of 10 
mM acetic acid (pKa = 4.76) with 10 mM NaOH at 25°C (pK^ = 14.00). 

13 





^ 



Q- 




